Dresden
Technology Portal

 
Your access to research infrastructure and know-how
de|en
View all instruments of this unit

Atomic Layer Deposition (ALD)

Basic Information

Name: Atomic Layer Deposition (ALD)
Facility: 300 mm CMOS Cleanroom
Partner: Fraunhofer Institute for Photonic Microsystems (IPMS)

Description

Features:

  • ALD deposited High-k oxides and electrodes for: stand-alone memory and embedded memory (SRAM, DRAM, RRAM and FRAM)
  • HfO2, TiN and TaN for High-k / Metal Gate (HKMG) for different flavors: high-k first, high-k last, FDSOI and FinFET transistor technologies
  • Fully CMOS-compatible ALD deposited HfO2 based ferroelectrics for FeFET NVM memory
  • Passive components integrating ALD deposited 3D high-k MIM capacitors (for buffering and decoupling purposes in chip (System on Chip - SoC) or package (System in Package - SiP) level)
  • Plasma activated ALD (PEALD) nickel for NiSi source/drain contacts
  • ALD processes of metal and metal nitrides integrated in 28 nm BEOL copper interconnects
  • PEALD oxide and nitrides for the transistor module and for sub 28 nm double patterning schemes such as SADP
  • Hardmask for high aspect etching in silicon and oxide
  • Passivation layers for photovoltaics 
  • ALD processes for MEMS/MOEMS applications: etch stops, wear resistant layers, optical layers (Bragg mirror) and sensor materials (ISFET)

Rapid ALD precursor screening:

  • Fast screening by employing in-situ analytics (QCM and QMS)
  • Fundamental research on nucleation fi lm growth and step coverage
  • Scale up to from small samples up to 300 mm wafers
  • Single wafer and Large Batch ALD
  • Crossflow, Showerhead and Batch Furnace process chambers

Materials research and development for:

  • High-k oxides (HfO2, ZrO2, TiO2, Al2O3 ,SiO2)
  • Metals and metal nitrides
  • Cu BEoL barrier/seed
  • Hardmasks for high aspect ratio etching in silicon and oxide
  • Liners and spacer
  • Low cycle-time test chip for electrical read out for MIS / MIM devices 
  • Planar and 3D high-aspect ratio structures

Link to Further Details

https://www.ipms.fraunhofer.de/en/cleanrooms/300mm-semiconductor-processes/Atomic-Layer-Depostion.html

Options of instrument usage

Points of Contact

Dr. Benjamin Lilienthal-Uhlig
Email:
Phone:
+49 (0) 351 26 07-3064

Associated Services

Name Preview Actions
Screening Fab Services

Last Update

Last updated at: 17 January 2025 at 15:03:58